Equivariant Normal Form for Nondegenerate Singular Orbits of Integrable Hamiltonian Systems Formes Normales Équivariantes Pour Les Orbites Singulières Nondégénérées Des Systèmes Hamiltoniens Intégrables Eva Miranda and Nguyen Tien Zung
نویسنده
چکیده
We consider an integrable Hamiltonian system with n-degrees of freedom whose first integrals are invariant under the symplectic action of a compact Lie group G. We prove that the singular Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in a Gequivariant way, to the linearized foliation in a neighborhood of a compact singular non-degenerate orbit. We also show that the non-degeneracy condition is not equivalent to the non-resonance condition for smooth systems. Résumé. On considère un système hamiltonien intégrable à n degrés de liberté et une action symplectique d’un groupe de Lie compact G qui laisse invariantes les intégrales premières. On prouve que le feuilletage lagrangien singulier attaché à ce système hamiltonien est symplectiquement équivalent, de façon Géquivariante, au feuilletage linearisé dans un voisinage d’une orbite compacte singulière. On démontre aussi que la condition de non-dégénéréscence n’est pas équivalente à la non-résonance pour les systèmes différentiables.
منابع مشابه
Equivariant Normal Form for Nondegenerate Singular Orbits of Integrable Hamiltonian Systems
We consider an integrable Hamiltonian system with n-degrees of freedom whose first integrals are invariant under the symplectic action of a compact Lie group G. We prove that the singular Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in a Gequivariant way, to the linearized foliation in a neighborhood of a compact singular non-degenerate orbit. We also...
متن کاملJa n 19 99 ON RELATIVE NORMAL MODES
We generalize theWeinstein-Moser theorem on the existence of nonlinear normal modes near an equilibrium in a Hamiltonian system to a theorem on the existence of relative periodic orbits near a relative equilibrium in a Hamiltonian system with continuous symmetries. In particular we prove that under appropriate hypotheses there exist relative periodic orbits near relative equilibria even when th...
متن کاملUnique normal forms for the Takens–Bogdanov singularity in a special case
We consider further reduction of normal forms for nilpotent planar vector fields. We give a unique normal form for a special case of an open problem for the Takens–Bogdanov singularity. 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Unicité des formes normales pour la singularité de Takens–Bogdanov dans un cas particulier Résumé. On étudie l’unicité des formes nor...
متن کاملPeriodicity and Quasi-periodicity for Super-integrable Hamiltonian Systems
Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a com-mensurability condition is imposed on an angular momentum component. R ´ ESUMÉ...
متن کاملUnstable periodic orbits and Attractor of the Lorenz Model
Numerical method for detection of unstable periodic orbits on attractors of nonlinear dynamical systems is proposed. This method requires the similar techniques as the data assimilation does. This fact facilitates its implementation for geophysical models. Some low-period orbits of the Lorenz model have been calculated explicitely. The orbits encoding and application of symbolic dynamics is use...
متن کامل